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Abstract
The tensor product of vector and arbitrary representations of the non-standard q-
deformation U ′

q(son) of the universal enveloping algebra U(son) of Lie algebra
son is defined. The Clebsch–Gordan coefficients of the tensor product of vector
and arbitrary classical type representations of q-algebra U ′

q(son) are found in
an explicit form. Some important corollaries are considered. In particular, the
Wigner–Eckart theorem for vector operators is proved.

PACS numbers: 0220, 0240, 0365

1. Introduction

For the last fifteen years, much attention by mathematicians and mathematical physicists
has been paid to the subject of quantum algebra and quantum groups. Besides the standard
deformation of Lie algebra proposed by Drinfeld [1] and Jimbo [2], other (non-standard)
deformations are also under consideration. This paper deals with the deformation U ′

q(son) of
the universal enveloping algebra U(son) proposed by Gavrilik and Klimyk [3]. Let us mention
that the algebra U ′

q(so3) appeared earlier in [4].
As a matter of interest, the algebra U ′

q(son) arose naturally as auxiliary algebra in deriving
the algebra of observables in 2 + 1 quantum gravity with two-dimensional space of genus g,
so that n depends on g, n = 2g + 2 [5–8].

As shown in [9], due to the existence of chain embeddings

U ′
q(son) ⊃ U ′

q(son−1) ⊃ · · · ⊃ U ′
q(so3) ⊃ U ′

q(so2)

the algebra U ′
q(son) admits a q-analogue of the Gel’fand–Tsetlin (GT) formalism for

construction of finite-dimensional irreducible representations. In particular, the representations
parametrizing by the highest weights of representations of the corresponding Lie algebra
and reducing them in the limit q → 1 were constructed. They are called classical type
representations.

Since the algebra U ′
q(son) is not a Hopf algebra, there is no natural way to introduce the

notion of a tensor product of representations. But, as shown in [11–13], the algebra U ′
q(son) is
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a subalgebra in the Drinfeld–Jimbo Hopf algebra Uq(sln). Moreover, it is possible to show that
the algebra U ′

q(son) is a Uq(sln)-comodule algebra such that the coaction coincides with the
comultiplication in Uq(sln) if one embeds U ′

q(son) into Uq(sln). This comodule structure can
be used to introduce the tensor product of vector and arbitrary representations T of U ′

q(son)

(which will be denoted by T ⊗).
We obtain the decomposition of T ⊗ into irreducible subrepresentations and find the

corresponding Clebsch–Gordan coefficients (CGCs) in the case when T is an irreducible finite-
dimensional representation of the classical type. It is shown that decomposition of T ⊗ has the
same form as in the case of Lie algebra son and the corresponding CGCs are q-deformations
of their classical analogues [14, 15]. Taking into account this decomposition and embedding
U ′

q(son) ⊂ Uq(sln), we obtain some important corollaries.
It is well known that the Wigner–Eckart theorem for the tensor operators with respect to

Lie algebra son (and, especially, so3) is very important in physics. In this paper, we give a
q-analogue for the case of vector operators.

Throughout we suppose that q is not a root of unity.

2. The q-deformed algebra U ′
q(son)

According to [3], the non-standard q-deformation U ′
q(son) of the Lie algebra son is given as

a complex associative algebra with n − 1 generating elements I21, I32, . . . , In,n−1 obeying the
defining relations

I 2
j,j−1Ij−1,j−2 + Ij−1,j−2I

2
j,j−1 − [2] Ij,j−1Ij−1,j−2Ij,j−1 = −Ij−1,j−2

I 2
j−1,j−2Ij,j−1 + Ij,j−1I

2
j−1,j−2 − [2] Ij−1,j−2Ij,j−1Ij−1,j−2 = −Ij,j−1

[Ii,i−1, Ij,j−1] = 0 if |i − j | > 1
(1)

where q + q−1 ≡ [2], q ∈ C, q �= 0,±1. Along with the definition in terms of trilinear
relations, we also give a ‘bilinear’ presentation. To this end, we introduce the generators

I±
k,l ≡ [Il+1,l , I

±
k,l+1]q±1 k > l + 1 l � 1 k � n (2)

where [X, Y ]q±1 ≡ q±1/2XY − q∓1/2YX and I +
k+1,k ≡ I−

k+1,k ≡ Ik+1,k . Then (1) implies

[I±
lm, I±

kl ]q±1 = I±
km [I±

kl , I
±
km]q±1 = I±

lm [I±
km, I±

lm]q±1 = I±
kl if k > l > m

[I±
kl , I

±
mp] = 0 if k > l > m > p or k > m > p > l

[I±
kl , I

±
mp] = ±(q − q−1)(I±

lp I
±
km − I±

kpI
±
ml) if k > m > l > p.

(3)

The definitions of U ′
q(son) by means of relations (1) and by means of relations (3) are

equivalent [13]. If q → 1 (‘classical’ limit), then both sets of relations (3), corresponding to
indices ‘+’ and ‘−’, reduce to those of son.

3. Tensoring of representations of algebra U ′
q(son) by the vector representation

Let T be a representation of U ′
q(son) on the linear space V with the basis {vα} and V1 be the

n-dimensional linear space with the basis {vk}, k = 1, 2, . . . , n, and V⊗ ≡ V1 ⊗ V .

Proposition 1. The map T ⊗ from U ′
q(son) to End V⊗ given by the formulas

T ⊗(Ij,j−1) (vj−1 ⊗ vα) = q vj−1 ⊗ T (Ij,j−1)vα − q1/2 vj ⊗ vα (4)

T ⊗(Ij,j−1) (vj ⊗ vα) = q−1 vj ⊗ T (Ij,j−1)vα + q−1/2 vj−1 ⊗ vα (5)

T ⊗(Ij,j−1) (vk ⊗ vα) = vk ⊗ T (Ij,j−1)vα j �= k j − 1 �= k (6)

defines a representation of U ′
q(son) on the space V⊗.



On tensor products of representations of U ′
q (son) 3097

Proof. This proposition can be proved by straightforward verification. �
In the case when T is the trivial representation of U ′

q(son) given by formulas T (a) = 0,
a ∈ U ′

q(son), a �= 1, proposition 1 gives us a representation on the space V1 ∼ V⊗. We denote
this representation by T1.

T1(Ij,j−1) vk = −q1/2δk,j−1vj + q−1/2δk,j vj−1. (7)

The representations T1 and Tmn
, mn = (1, 0, . . . , 0) (see next section), are equivalent.

In the limit q → 1, proposition 1 defines the representation which is the tensor product
of the vector and some arbitrary representation of the Lie algebra son. On the basis of these
two arguments, we shall also use the notation T ⊗ ≡ T1 ⊗ T .

4. Irreducible representations of U ′
q(son)

In this section we describe (in the framework of a q-analogue of the GT formalism) the
irreducible finite-dimensional representation of the algebra U ′

q(son), which are q-deformations
of the finite-dimensional irreducible representations of the Lie algebra son. They are given by
sets mn consisting of �n/2� numbers m1,n, m2,n, . . . , m�n/2�,n (here �n/2� denotes the integral
part of n/2) which are all integral or all half-integral and satisfy the dominance conditions

m1,2p+1 � m2,2p+1 � · · · � mp,2p+1 � 0

m1,2p � m2,2p � · · · � mp−1,2p � |mp,2p| (8)

for n = 2p+1 and n = 2p, respectively. These representations are denoted by Tmn
. For a basis

in a representation space we take the q-analogue of the GT basis which is obtained by successive
reduction of the representation Tmn

to the subalgebra U ′
q(son−1), U ′

q(son−2), . . . , U
′
q(so3),

U ′
q(so2) ≡ U(so2). As in the classical case, its elements are labelled by the GT tableaux

{ξn} ≡ {mn, ξn−1} ≡ {mn,mn−1, ξn−2} ≡ · · · ≡ {mn,mn−1, . . . ,m2} (9)

where the components of mk and mk−1 satisfy the ‘betweenness’ conditions

m1,2p+1 � m1,2p � m2,2p+1 � m2,2p � · · · � mp,2p+1 � mp,2p � −mp,2p+1

m1,2p � m1,2p−1 � m2,2p � m2,2p−1 � · · · � mp−1,2p−1 � |mp,2p|. (10)

The basis element defined by tableaux {ξn} is denoted as |ξn〉. We suppose that the
representation space is a Hilbert space and vectors |ξn〉 are orthonormal. It is convenient
to introduce the so-called l-coordinates

lj,2p+1 = mj,2p+1 + p − j + 1 lj,2p = mj,2p + p − j (11)

for the numbers mi,k . The operator Tmn
(I2p+1,2p) of the representation Tmn

of U ′
q(son) acts

upon GT basis elements, labelled by (9), by the formula

Tmn
(I2p+1,2p)|ξn〉 =

p∑
j=1

A
j

2p(ξn)|(ξn)+j

2p〉 −
p∑

j=1

A
j

2p((ξn)
−j

2p )|(ξn)−j

2p 〉 (12)

and the operator Tmn
(I2p,2p−1) of the representation Tmn

acts as

Tmn
(I2p,2p−1)|ξn〉 =

p−1∑
j=1

B
j

2p−1(ξn)|(ξn)+j

2p−1〉

−
p−1∑
j=1

B
j

2p−1((ξn)
−j

2p−1)|(ξn)−j

2p−1〉 + i C2p−1(ξn)|ξn〉

Tmn
(I21)|ξn〉 = i [l12]|ξn〉.

(13)
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In these formulas, (ξn)
±j

k means the tableau (9) in which j th component mj,k in mk is replaced
by mj,k ± 1. The coefficients A

j

2p, Bj

2p−1, C2p−1 in (12) and (13) are given by the expressions

A
j

2p(ξn) =
(

[lj,2p][lj,2p + 1]

[2lj,2p][2lj,2p + 2]

∏p

i=1[li,2p+1 + lj,2p][li,2p+1 − lj,2p − 1]∏p

i �=j [li,2p + lj,2p][li,2p − lj,2p]

×
∏p−1

i=1 [li,2p−1 + lj,2p][li,2p−1 − lj,2p − 1]∏p

i �=j [li,2p + lj,2p + 1][li,2p − lj,2p − 1]

)1
2

(14)

and

B
j

2p−1(ξn) =
( ∏p

i=1[li,2p + lj,2p−1][li,2p − lj,2p−1]

[2lj,2p−1 + 1][2lj,2p−1 − 1]
∏p−1

i �=j [li,2p−1 + lj,2p−1][li,2p−1 − lj,2p−1]

×
∏p−1

i=1 [li,2p−2 + lj,2p−1][li,2p−2 − lj,2p−1]

[lj,2p−1]2
∏p−1

i �=j [li,2p−1 + lj,2p−1 − 1][li,2p−1 − lj,2p−1 − 1]

)1
2

(15)

C2p−1(ξn) =
∏p

i=1[li,2p]
∏p−1

i=1 [li,2p−2]∏p−1
i=1 [li,2p−1][li,2p−1 − 1]

(16)

where numbers in square brackets mean q-numbers defined by

[a] := qa − q−a

q − q−1
. (17)

It is seen from (16) that C2p−1 in (13) identically vanishes if mp,2p ≡ lp,2p = 0.
A proof of the fact that formulas (12)–(16) indeed determine a representation of U ′

q(son) is
given in [9]. These representations are called representations of the classical type, since under
the limit q → 1 the operators Tmn

(Ij,j−1) turn into the corresponding operators for irreducible
finite-dimensional representations of the Lie algebra son with highest weights mn. Note that
the algebra U ′

q(son) also has irreducible finite-dimensional representations T of non-classical
type (see [10]), i.e. such that the operators T (Ij,j−1) have no classical limit q → 1. In this
paper, we shall consider only the classical type representations.

5. Decomposition of representations T1 ⊗ Tm3 of the algebra U ′
q(so3)

In this, and the following sections, we consider the decomposition of representations T ⊗ ≡
T1 ⊗ Tmn

into irreducible constituents of the algebra U ′
q(son). In this section, we restrict

ourselves to the case n = 2, 3.
First, we consider the case of the algebra U ′

q(so2) ≡ U(so2). This algebra has
representations Tm, m ≡ m12, m ∈ 1

2Z, acting on one-dimensional spaces with basis vectors
|m〉 and Tm(I21)|m〉 = i[m]|m〉. Then

T ⊗(I21)(v1 ⊗ |m〉) = iq[m]v1 ⊗ |m〉 − q1/2v2 ⊗ |m〉
T ⊗(I21)(v2 ⊗ |m〉) = iq−1[m]v2 ⊗ |m〉 + q−1/2v1 ⊗ |m〉.

This representation is reducible. We introduce the vectors

v
(m)
± = ∓iq−1/2±mv1 + v2. (18)

Then the vectors |m ± 1〉⊗ := v
(m)
± ⊗ |m〉 are eigenvectors of T ⊗(I21): T ⊗(I21)|m ± 1〉⊗ =

i[m ± 1]|m ± 1〉⊗. This fact can be easily verified by direct calculation using the definition of
q-numbers. Thus, we have decomposition T ⊗ ≡ T1 ⊗ Tm = Tm+1 ⊕ Tm−1.



On tensor products of representations of U ′
q (son) 3099

Now, we consider the case of the algebra U ′
q(so3). This algebra has representations Tl ,

m3 ≡ (m13) ≡ (l), l ∈ {0, 1/2, 1, 3/2, . . .}, acting on the spaces Vl with the basis vectors
|l, m〉, (m ≡ m12), m = −l,−l + 1, . . . , l:

Tl(I21)|l, m〉 = i[m]|l, m〉 Tl(I32)|l, m〉 = Al,m|l, m + 1〉 − Al,m−1|l, m − 1〉
where Al,m = dm([l−m][l+m+1])1/2, dm = (

[m][m+1]/([2m][2m+2])
)1/2

. Let us consider
the vectors

|l′,m〉⊗ := α
(l′)
l,mv(m−1)

+ ⊗ |l, m − 1〉 + β
(l′)
l,mv3 ⊗ |l, m〉 + γ

(l′)
l,m v

(m+1)
− ⊗ |l, m + 1〉 (19)

where m = −l′,−l′ + 1, . . . , l′, and

l′ = l + 1, l, l − 1 if l � 1

l′ = 3/2, 1/2 if l = 1/2

l′ = 1 if l = 0.

The vectors v
(m)
± in (19) are defined in (18) and

α
(l+1)
l,m = ql−m+1/2dm−1([l + m][l + m + 1])1/2

β
(l+1)
l,m = ([l − m + 1][l + m + 1])1/2

γ
(l+1)
l,m = −ql+m+1/2dm([l − m][l − m + 1])1/2

α
(l)
l,m = −q−m−1/2dm−1([l + m][l − m + 1])1/2

β
(l)
l,m = [m]

γ
(l)
l,m = −qm−1/2dm([l − m][l + m + 1])1/2

α
(l−1)
l,m = −q−l−m−1/2dm−1([l − m][l − m + 1])1/2

β
(l−1)
l,m = ([l − m][l + m])1/2

γ
(l−1)
l,m = q−l+m−1/2dm([l + m][l + m + 1])1/2.

From the case of U ′
q(so2), it is easy to see that T ⊗(I21)|l′,m〉⊗ = i[m]|l′,m〉⊗. One can

show by direct calculation that T ⊗(I32)|l′,m〉⊗ = Al′,m|l′,m + 1〉⊗ − Al′,m−1|l′,m − 1〉⊗.
It means that the vectors |l′,m〉⊗ at fixed l′ span a subspace in V⊗, which is invariant and
irreducible under the action of T ⊗(a), a ∈ U ′

q(so3). The corresponding subrepresentation is
equivalent to Tl′ . Comparing the dimensions of Tl′ with the dimension of T ⊗, we conclude that
T ⊗ = Tl+1 ⊕Tl ⊕Tl−1, if l � 1; T ⊗ = T3/2 ⊕T1/2, if l = 1/2; T ⊗ = T1, if l = 0. Let us recall

that Tl ≡ Tm3 , m13 ≡ l. The numbers α
(l′)
l,m, β(l′)

l,m and γ
(l′)
l,m are CGCs of these decompositions.

6. Decomposition of T1 ⊗ Tmn
of the algebra U ′

q(son), n � 4

In this section, we consider the decomposition of the representations T ⊗ ≡ T1 ⊗ Tmn
of the

algebra U ′
q(son), n � 4, into irreducible constituents. We shall show that this decomposition

has the form

T ⊗ =
⊕

m′
n∈S(mn)

Tm′
n

(20)

where

S(m2p+1) =
p⋃

j=1

{m+j

2p+1} ∪
p⋃

j=1

{m−j

2p+1} ∪ {m2p+1} (21)

S(m2p) =
p⋃

j=1

{m+j

2p} ∪
p⋃

j=1

{m−j

2p }. (22)



3100 N Z Iorgov

By m
±j
n we mean here the set mn with mj,n replaced by mj,n ±1, respectively. If some m

±j
n is

not dominant (8), then the corresponding m
±j
n must be omitted. If mp,2p+1 = 0 then m2p+1 in

the right-hand side of (21) must also be omitted. For decomposition (20) of the representation
T ⊗, there is a corresponding decomposition of carrier space:

V⊗ ≡ V1 ⊗ Vmn
=

⊕
m′

n∈S(mn)

Vm′
n
. (23)

In order to give this decomposition in an explicit form, we change the basis {vk ⊗ |ξn〉},
k = 1, 2, . . . , n, in V⊗ to {vk ⊗ |ξn〉}, k = +,−, 3, . . . , n, by replacing (for every fixed
{ξn} = {mn,mn−1, . . . ,m3,m2}) two basis vectors v1 ⊗ |ξn〉 and v2 ⊗ |ξn〉 by v

(m12)
+ ⊗ |ξn〉

and v
(m12)− ⊗ |ξn〉 (see (18)). From now on, we shall omit the index (m12) in the notation of the

basis vectors v
(m12)± ⊗|ξn〉, supposing that it is equal to the m12-component of the corresponding

GT tableaux {ξn}.
We introduce the vectors (where {ξ ′

n} = {m′
n,m′

n−1, . . . ,m′
3,m′

2})
|m′

n, ξn−1〉⊗ :=
∑
k

∑
|mn,ξ

′
n−1〉∈Vmn

(
k, (mn, ξ

′
n−1)|(m′

n, ξn−1)
)
vk ⊗ |mn, ξ

′
n−1〉 (24)

in the space V⊗, where k runs over the set +,−, 3, . . . , n, and coefficients(
k, (mn, ξ

′
n−1)|(m′

n, ξn−1)
)

are CGCs. We first define these CGCs in an explicit form and
then, in theorem 1, prove that the formulas for the action of the operators T ⊗(Ik+1,k),
k = 1, 2, . . . , n− 1, on the vectors |m′

n, ξn−1〉⊗ coincide with the corresponding formulas for
the action of the operators Tm′

n
(Ik+1,k) on the GT basis vectors |m′

n, ξn−1〉 (see (12), (13)). It
will mean that the defined coefficients are really CGCs.

We put
(
k, (mn, ξ

′
n−1)|(m′

n, ξn−1)
) = 0 if one of the conditions

(1) m′
n �∈ S(mn)

(2) ms �∈ S(m′
s) s = n − 1, . . . , k k � 3

(3) ms �∈ S(m′
s) s = n − 1, . . . , 3 k = +,−

(4) ξ ′
k−1 �= ξk−1 k = 3, 4, . . . , n

(5) m12 �= m′
12 + 1 k = +

(6) m12 �= m′
12 − 1 k = −

is fulfilled. The non-zero CGC for k = n are:

(
2p + 1, (m2p+1, ξ2p)|(m+j

2p+1, ξ2p)
) =

( p∏
r=1

[lj,2p+1 + lr,2p][lj,2p+1 − lr,2p]

)1
2

(
2p + 1, (m2p+1, ξ2p)|(m2p+1, ξ2p)

) =
p∏

r=1

[lr,2p]

(
2p + 1, (m2p+1, ξ2p)|(m−j

2p+1, ξ2p)
) =

( p∏
r=1

[lj,2p+1 + lr,2p − 1][lj,2p+1 − lr,2p − 1]

)1
2

(25)

(
2p, (m2p, ξ2p−1)|(m+j

2p, ξ2p−1)
) =

( p−1∏
r=1

[lj,2p + lr,2p−1][lj,2p − lr,2p−1 + 1]

)1
2

(
2p, (m2p, ξ2p−1)|(m−j

2p , ξ2p−1)
) =

( p−1∏
r=1

[lj,2p + lr,2p−1 − 1][lj,2p − lr,2p−1]

)1
2

.

(26)

(They are defined up to normalization, i.e. multiplication of these CGCs by some constants
will not spoil the following results.)
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All the other CGCs can be represented by the following formula:(
k, ξn|ξ ′

n

) = qk−n
〈mn+1, ξn|Tmn+1(I

−
n+1,k)|mn+1, ξ

′
n〉

〈mn+1,mn, ξn−1|Tmn+1(In+1,n)|mn+1,m′
n, ξn−1〉

×(n, (mn, ξn−1)|(m′
n, ξn−1)

)
(27)

where the generators I−
n+1,k are defined in (2). If k = + or k = − in the left-hand side of (27),

one must put k = 2 in the right-hand side. The set mn+1 must be chosen to give a non-zero
denominator in the right-hand side of (27). Note that if (n, (mn, ξn−1)|(m′

n, ξn−1)) �= 0, one
can always make such a choice; moreover, the resulting CGC will not depend on this particular
choice. In the case n = 3 we reobtain the CGCs for the algebra U ′

q(so3) (see the previous
section).

Before we prove the main theorem, we describe the CGCs factorization property. Let
us consider the CGC (n − 1, (mn,mn−1, ξn−2)|(m′

n,m′
n−1, ξn−2)). It depends on mn, m′

n,
mn−1, m′

n−1 and mn−2. From (12), (13) and (25)–(27), it follows that all the dependence on
the numbers mn−2 in this coefficient appears to be due to the matrix element of operator
Tmn+1(I

−
n+1,n−1), where I−

n+1,n−1 = q−1/2In,n−1In+1,n − q1/2In+1,nIn,n−1. This dependence,
which in fact arises from some factors in matrix elements of operatorTmn+1(In,n−1), has the form
of the CGC (n − 1, (mn−1, ξn−2)|(m′

n−1, ξn−2)) for the algebra U ′
q(son−1). This fact follows

from the explicit expressions of matrix elements (14)–(16) and from the formulas (25), (26)
with n replaced by n − 1. Thus, we have the decomposition(

n − 1, ξn|ξ ′
n

) =
(

1

1

mn

mn−1

∣∣∣∣ m′
n

m′
n−1

) (
n − 1, ξn−1|ξ ′

n−1

)
. (28)

The expression
(

1
1

mn

mn−1

∣∣∣ m′
n

m′
n−1

)
, uniquely defined by this decomposition, does not depend either

on ξn−2 or on ξ ′
n−2.

Proposition 2 (CGCs factorization property). We have the following decomposition(
k, ξn|ξ ′

n

) =
(

1

1

mn

mn−1

∣∣∣∣ m′
n

m′
n−1

) (
k, ξn−1|ξ ′

n−1

)
k < n. (29)

Proof. Let us consider the product of
(

1
1

mn

mn−1

∣∣∣ m′
n

m′
n−1

)
with an arbitrary CGC for the algebra

U ′
q(son−1) given by formula (27) with n replaced by n − 1. (Hereafter, for convenience, by

the symbol I−
k,l we also mean the corresponding representation operator Tmn+1(I

−
k,l).)(

1

1

mn

mn−1

∣∣∣∣ m′
n

m′
n−1

) (
k, ξn−1|ξ ′

n−1

)

= q−1 〈mn+1,mn,mn−1, ξn−2|I−
n+1,n−1|mn+1,m′

n,m′
n−1, ξn−2〉

〈mn+1,mn, ξn−1|In+1,n|mn+1,m′
n, ξn−1〉

×
(
n, (mn, ξn−1)|(m′

n, ξn−1)
)

(
n − 1, (mn−1, ξn−2)|(m′

n−1, ξn−2)
)(n − 1, (mn−1, ξn−2)|(m′

n−1, ξn−2)
)

×qk−(n−1) 〈mn+1, m̃n, ξn−1|I−
n,k|mn+1, m̃n, ξ

′
n−1〉

〈mn+1, m̃n,mn−1, ξn−2|In,n−1|mn+1, m̃n,m′
n−1, ξn−2〉 (30)

where all the m̃n are equal to m′
n or mn (as noted earlier, both these variants lead to the same

CGC (k, ξn−1|ξ ′
n−1)). Now we decompose the obtained expression into two summands

〈mn+1,mn,mn−1, ξn−2|I−
n+1,n−1|mn+1,m′

n,m′
n−1, ξn−2〉

= q−1/2〈mn+1,mn,mn−1, ξn−2|I−
n,n−1I

−
n+1,n|mn+1,m′

n,m′
n−1, ξn−2〉

−q1/2〈mn+1,mn,mn−1, ξn−2|I−
n+1,nI

−
n,n−1|mn+1,m′

n,m′
n−1, ξn−2〉.
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Fixing m̃n = mn for the first summand and m̃n = m′
n for the second summand, we have

for (30) the following expression

qk−n〈mn+1, ξn|I−
n+1,k|mn+1, ξ

′
n〉

〈mn+1,mn, ξn−1|In+1,n|mn+1,m′
n, ξn−1〉

(
n, (mn, ξn−1)|(m′

n, ξn−1)
) = (

k, ξn|ξ ′
n

)
.

Thus, the proposition is proved. �

Iterating proposition 2, we can present an arbitrary CGC for the algebra U ′
q(son) as a

product of expressions of type
(

1
1

mk

mk−1

∣∣∣ m′
k

m′
k−1

)
and (25), (26).

Theorem 1. The operators T ⊗(Ik+1,k), k = 1, 2, . . . , n − 1, act on the set of the
vectors {|m′

n, ξn−1〉⊗} defined by (24) with CGCs defined by (25)–(27), in correspondence
with (12), (13). We have the decomposition (20).

Proof. We shall prove the theorem by induction. As claimed in the previous section, this
theorem is valid for the case of the algebra U ′

q(so3). We assume that the theorem is valid
for the case of the algebra U ′

q(son−1), and then prove this theorem for the case of the algebra
U ′

q(son).
First, let us show that the action of the operators T ⊗(Ik+1,k), k = 1, 2, . . . , n − 2, on

the vectors {|m′
n, ξn−1〉⊗} is correct, i.e. this action exactly corresponds to the action of

Tmn−1(Ik+1,k) on the basis vectors {|mn−1, ξn−2〉}. Using (24) and proposition 2, we have

|m′
n, ξn−1〉⊗ = (

n, (mn, ξn−1)|(m′
n, ξn−1)

){
vn⊗|mn, ξn−1〉

}
+
∑
m′

n−1

(
1

1

mn

m′
n−1

∣∣∣∣ m′
n

mn−1

)

×
{ ∑

k=n−1,...,3,+,−

∑
ξ ′
n−2

(
k, (m′

n−1, ξ
′
n−2)|(mn−1, ξn−2)

)
vk ⊗ |mn,m′

n−1, ξ
′
n−2〉

}
.

The vectors in the braces transform under the action of operators T ⊗(Ik+1,k), k = 1, 2, . . . , n−
2, as vectors {|mn−1, ξn−2〉} under the action of operators Tmn−1(Ik+1,k). For the vector in the
first braces, this fact follows from formulas (6). For the vector in the second braces, this fact
follows from the coincidence of this vector with the right-hand side of (24) with n replaced
by n − 1 and from the induction assumption. Since coefficients at these braces do not depend
on ξn−2, we obtain that the action of operators T ⊗(Ik+1,k), k = 1, 2, . . . , n − 2, on vectors
{|m′

n, ξn−1〉⊗} is as required.
Now, let us show that the action of the operator T ⊗(In,n−1) on the vectors {|m′

n, ξn−1〉⊗}
is also correct. For this end, we write down the required action (corresponding to the
formulas (12), (13)) of the operator T ⊗(In,n−1) on the vector |m′

n, ξn−1〉⊗:

T ⊗(In,n−1)|m′
n,mn−1, ξn−2〉⊗

=
∑

m′
n−1∈S(mn−1)

〈m′
n,m′

n−1, ξn−2|In,n−1|m′
n,mn−1, ξn−2〉|m′

n,m′
n−1, ξn−2〉⊗

where the map S is defined in (21), (22). Then, we rewrite the right-hand side of this
relation using (24) for |m′

n,m′
n−1, ξn−2〉⊗, and compare this result with the result obtained by

direct action of T ⊗(In,n−1) on the right-hand side of (24) for |m′
n,mn−1, ξn−2〉⊗ and using

formulas (4)–(6). The results must be the same. To prove this we need to show that the
coefficients at the different basis vectors of these results are equal. We shall illustrate three
cases.
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• Basis vector vn ⊗ |mn,m′
n−1, ξn−2〉, m′

n−1 ∈ S(mn−1).
Equating the coefficients at the vector vn ⊗ |mn,m′

n−1, ξn−2〉 we obtain the relation

〈m′
n,m′

n−1, ξn−2|In,n−1|m′
n,mn−1, ξn−2〉

(
n, (mn,m′

n−1, ξn−2)|(m′
n,m′

n−1, ξn−2)
)

= q−1〈mn,m′
n−1, ξn−2|In,n−1|mn,mn−1, ξn−2〉

×(n, (mn,mn−1, ξn−2)|(m′
n,mn−1, ξn−2)

)
−q1/2

(
n − 1, (mn,m′

n−1, ξn−2)|(m′
n,mn−1, ξn−2)

)
.

Using the identity(
n, (mn,mn−1, ξn−2)|(m′

n,mn−1, ξn−2)
) = (

n, (mn,m′
n−1, ξn−2)|(m′

n,m′
n−1, ξn−2)

)
×〈mn+1,mn,mn−1, ξn−2|In+1,n|mn+1,m′

n,mn−1, ξn−2〉
〈mn+1,mn,m′

n−1, ξn−2|In+1,n|mn+1,m′
n,m′

n−1, ξn−2〉
which follows from (14)–(16) and (25), (26), we rewrite the previous relation in the
following equivalent form(
n − 1, (mn,m′

n−1, ξn−2)|(m′
n,mn−1, ξn−2)

)
= q−1

(
n, (mn,m′

n−1, ξn−2)|(m′
n,m′

n−1, ξn−2)
)

〈mn+1,mn,m′
n−1, ξn−2|In+1,n|mn+1,m′

n,m′
n−1, ξn−2〉

×〈mn+1,mn,m′
n−1, ξn−2|I−

n+1,n−1|mn+1,m′
n,mn−1, ξn−2〉.

The obtained relation directly follows from definition (27) of the CGC for k = n− 1, and
therefore is correct.

• Basis vector vn−1 ⊗ |mn,m′′
n−1, ξn−2〉, m′′

n−1 ∈ S(m′
n−1), m′

n−1 ∈ S(mn−1).
Equating the coefficients at the vector vn−1 ⊗ |mn,m′′

n−1, ξn−2〉 we obtain the relation∑
m′

n−1

〈m′
n,m′

n−1, ξn−2|In,n−1|m′
n,mn−1, ξn−2〉

×(n − 1, (mn,m′′
n−1, ξn−2)|(m′

n,m′
n−1, ξn−2)

)
=
∑
m′

n−1

q
(
n − 1, (mn,m′

n−1, ξn−2)|(m′
n,mn−1, ξn−2)

)
×〈mn,m′′

n−1, ξn−2|In,n−1|mn,m′
n−1, ξn−2〉

+δmn−1,m
′′
n−1

q−1/2
(
n, (mn,mn−1, ξn−2)|(m′

n,mn−1, ξn−2)
)

which acquires the equivalent form:

q−1 〈mn+1,mn,m′′
n−1, ξn−2|I−

n+1,n−1In,n−1|mn+1,m′
n,mn−1, ξn−2〉

= 〈mn+1,mn,m′′
n−1, ξn−2|In,n−1I

−
n+1,n−1|mn+1,m′

n,mn−1, ξn−2〉
+δmn−1,m

′′
n−1

q−1/2〈mn+1,mn,mn−1, ξn−2|In+1,n

×|mn+1,m′
n,mn−1, ξn−2〉 (31)

if one uses the identity(
n − 1, (mn, m̃n−1, ξn−2)|(m′

n, m̆n−1, ξn−2)
)

= q−1

(
n, (mn,mn−1, ξn−2)|(m′

n,mn−1, ξn−2)
)

〈mn+1,mn,mn−1, ξn−2|In+1,n|mn+1,m′
n,mn−1, ξn−2〉

×〈mn+1,mn, m̃n−1, ξn−2|I−
n+1,n−1|mn+1,m′

n, m̆n−1, ξn−2〉
with m̃n−1 = m′′

n−1, m̆n−1 = m′
n−1 and with m̃n−1 = m′

n−1, m̆n−1 = mn−1. The
equality (31) directly follows from the identity [I−

n+1,n−1, In,n−1]q−1 = In+1,n (see (3)).
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• Basis vector vk ⊗ |mn,m′′
n−1,m′

n−2, . . . ,m′
k, ξk−1〉, m′′

n−1 ∈ S(m′
n−1), m′

j ∈ S(mj ),
j = k, k + 1, . . . , n − 1, k = n − 2, n − 3, . . . , +,−.
Equating the coefficients at the vector vk ⊗|mn,m′′

n−1,m′
n−2, . . . ,m′

k, ξk−1〉, k < n−1,
we obtain the relation∑
m′

n−1

〈m′
n,m′

n−1, ξn−2|In,n−1|m′
n,mn−1, ξn−2〉

×(k, (mn,m′′
n−1,m′

n−2, . . . ,m′
k, ξk−1)

×|(m′
n,m′

n−1,mn−2, . . . ,mk, ξk−1)
)

=
∑
m′

n−1

(
k, (mn,m′

n−1,m′
n−2, . . . ,m′

k, ξk−1)

×|(m′
n,mn−1,mn−2, . . . ,mk, ξk−1)

)
×〈mn,m′′

n−1,m′
n−2, . . . ,m′

k, ξk−1|In,n−1

×|mn,m′
n−1,m′

n−2, . . . ,m′
k, ξk−1〉.

Using (27), it can be rewritten in the compact form:

〈mn+1,mn,m′′
n−1,m′

n−2, . . . ,m′
k, ξk−1|I−

n+1,k

×In,n−1|mn+1,m′
n,mn−1,mn−2, . . . ,mk, ξk−1〉

= 〈mn+1,mn,m′′
n−1,m′

n−2, . . . ,m′
k, ξk−1|In,n−1

×I−
n+1,k|mn+1,m′

n,mn−1,mn−2, . . . ,mk, ξk−1〉
(if index k at vk is ‘+’ or ‘−’, one should replace I−

n+1,k → I−
n+1,2). This equality directly

follows from the identity [I−
n+1,k, In,n−1] = 0 (see (3)).

In order to prove the decomposition (20), we need to show that the space V⊗ is the
direct sum of the described subspaces Vm′

n
. It can be shown by comparing the corresponding

dimensions, using the fact that all the representations Tm′
n

are pairwise inequivalent. Thus, the
theorem is proved. �

7. Embedding U ′
q(son) ⊂ Uq(sln)

The quantum algebra Uq(sln) is defined [1, 2] as a complex associative algebra with the
generating elements ei, fi, ki, k

−1
i , i = 1, 2, . . . , n − 1 and defining relations

kik
−1
i = k−1

i ki = 1 kikj = kj ki kiej k
−1
i = qaij ej kifj k

−1
i = q−aij fj

[ei, ej ] = [fi, fj ] = 0 |i − j | > 1 [ei, fj ] = δij
ki − k−1

i

q − q−1

e2
i ei±1 − (q + q−1)eiei±1ei + ei±1e

2
i = 0 f 2

i fi±1 − (q + q−1)fifi±1fi + fi±1f
2
i = 0

where aii = 2, ai,i±1 = −1 and aij = 0 for |i − j | > 1. Here q is a complex parameter,
q �= 0,±1. It is shown in [11,12], that the elements Ĩi+1,i = fi −q−1kiei , i = 1, 2, . . . , n−1,
satisfy relations (1) and define a homomorphism U ′

q(son) → Uq(sln). Moreover, it is proved
in [13] that this homomorphism is an embedding, i.e. we may consider U ′

q(son) as a subalgebra
in Uq(sln).

Let us define representation T1 of Uq(sln) on n-dimensional space V1 with the basis vectors
vk , k = 1, 2, . . . , n, by the formulas

T1(ei) vk = −q−1/2δi+1,kvk−1 T1(fi) vk = −q1/2δi,kvk+1

T1(ki) vk = qδi,k−δi+1,k vk.
(32)
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It is easy to verify that this representation is the vector representation (i.e. representation with
the highest weight (1, 0, . . . , 0)). The action formulas (32) imply

T1(Ĩi+1,i ) vk = −q1/2δi,kvk+1 + q−1/2δi+1,kvk−1. (33)

This representation of U ′
q(son) (see (7)) is equivalent to the classical type representation Tmn

with mn = (1, 0, . . . , 0) (the vector representation). Hence, similar to the classical case, the
restriction of the vector representation of Uq(sln) onto U ′

q(son) is the vector representation of
U ′

q(son).
The quantum algebraUq(sln)possesses the Hopf structure. Comultiplication on generators

of this algebra can be defined as

%(ei) = ei ⊗ k−1
i + 1 ⊗ ei %(fi) = fi ⊗ 1 + ki ⊗ fi %(ki) = ki ⊗ ki.

Therefore,

%(Ĩi+1,i ) = Ĩi+1,i ⊗ 1 + ki ⊗ Ĩi+1,i . (34)

Let T be a representation of Uq(sln) on the space V . Then, using the comultiplication, we
can define the representation T ⊗ := T1 ⊗ T on the space V1 ⊗ V . From (33) and (34),
formulas (4)–(6) follow, where T is the representation T of Uq(sln) restricted to U ′

q(son).
Moreover, the algebra U ′

q(son) is a Uq(sln)-comodule algebra with the coaction φ(Ii+1,i ) =
Ĩi+1,i ⊗ 1 + ki ⊗ Ii+1,i . Embedding U ′

q(son) into Uq(sln) we obtain (34). Proposition 1 is a
straightforward sequence of this comodule algebra structure.

Theorem 2. Every irreducible finite-dimensional representation T of Uq(sln) considered as
a representation of U ′

q(son) is a direct sum of irreducible classical type representations Tmn

of U ′
q(son) with integral mjn in mn.

Proof. At first, we prove this theorem for the case of irreducible finite-dimensional type
1 representations of Uq(sln). Every such representation is uniquely determined (see [16,
section 7.1.2]) by the highest weight of an irreducible finite-dimensional representation of
the Lie algebra sln, i.e. by the set of non-negative integers µn = (µ1,n, µ2,n, . . . , µn−1,n),
µj,n = 2(µn, αj )/(αj , αj ), (where αj are simple positive roots of the Lie algebra sln). For this
set, we define |µn| = µ1,n +2µ2,n + · · ·+ (n−1)µn−1,n, and prove the theorem by induction on
|µn|. There is only one representation of Uq(sln) with |µn| = 1. It is the vector representation
(µn = (1, 0, . . . , 0)). As was claimed above, the restriction of this representation onto U ′

q(son)

is equivalent to the classical type representation Tmn
with mn = (1, 0, . . . , 0). Thus, the

theorem is valid for representations Tµn
with |µn| = 1.

Now we assume that the theorem is valid for all the representations Tµn
with |µn| � s. Let

us consider a representation Tµ′
n

with |µ′
n| = s + 1. It is well known (see [16, section 7.2.1]),

that for every representation Tµ′
n

of Uq(sln) with |µ′
n| � 1, there exists a representation Tµn

with |µn| = |µ′
n| − 1 such that T1 ⊗ Tµn

contains Tµ′
n

as an irreducible subrepresentation.
This fact, theorem 1 and the induction assumption lead us to the fact that the restriction of
representation T1 ⊗ Tµn

, (and, therefore, the representation Tµ′
n
) onto U ′

q(son) contains only
irreducible classical type representations Tmn

of U ′
q(son) with integral mjn in mn.

Every irreducible finite-dimensional representation T of Uq(sln) can be presented as
T = Tµn

⊗ T1̃, where Tµn
is an irreducible finite-dimensional type 1 representation, and T1̃ is

a one-dimensional representation of Uq(sln) with matrices T1̃(ei) = T1̃(fi) = 0. Therefore,
T1̃(Ĩi+1,i ) = 0. From formula (34), it follows that representations T and Tµn

considered as
representations of U ′

q(son) have equivalent decomposition into irreducible constituents. �
Conjecture. Decomposition of irreducible representation Tµn

of Uq(sln) restricted to U ′
q(son)

contains the representations Tmn
of U ′

q(son) with the same multiplicities as in the case of
corresponding Lie algebra.
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We have proof of this conjecture for the cases of some particular representations Tµn
such

as symmetrical, antisymmetrical (fundamental) and some other ones. For the proof of this
conjecture for the case of n = 3, see [17].

Theorem 3. The set of irreducible finite-dimensional classical type representations Tmn

of U ′
q(son) with integral mjn in mn separates the elements of this algebra, i.e. for two

arbitrary elements X, Y ∈ U ′
q(son), X �= Y , there exists a representation Tmn

such that
Tmn

(X) �= Tmn
(Y ).

Proof. It was shown in [13] that the irreducible representations of U ′
q(son) obtained from

restriction of irreducible finite-dimensional representations of Uq(sln) separate the elements
of the algebra U ′

q(son). This fact and theorem 2 imply theorem 3. �

8. The Wigner–Eckart theorem for the vector operators

The formula (24) gives us the transformation from the basis {vk ⊗ |ξn〉} to the basis {|ξ ′
n〉⊗}

in the space V⊗. Because of (23), the transformation matrix is a non-degenerate matrix with
matrix element CGCs (k, ξn|ξ ′

n). Denote the matrix elements of the inverse matrix by (ξ ′
n|k, ξn)

(inverse CGCs). Let us find the expression for the vector vn ⊗|mn, ξn−1〉 from (24) in terms of
vectors |ξ ′

n〉⊗. Since this vector transforms under the action of T ⊗(a), a ∈ U ′
q(son−1), as the

vector |ξn−1〉 under the action of Tmn−1(a) (see formula (6)), from the Schur lemma we have

vn ⊗ |mn, ξn−1〉 =
∑
m′

n

(
(m′

n, ξn−1)|n, (mn, ξn−1)
) |m′

n, ξn−1〉⊗ (35)

where the coefficients
(
(m′

n, ξn−1)|n, (mn, ξn−1)
)

depend only on m′
n, mn, mn−1. From (24),

it also follows that m′
n ∈ S(mn). Although these coefficients are uniquely defined by (24)–

(27), we only need their explicit dependence on mn−1.
Let T ◦ (respectively T ) be a finite-dimensional representation of some associative algebra

A on a space V◦ with the basis {vk} (respectively on a space V with the basis {vα}). If we have
a definition of representation T ◦ ⊗T on V◦ ⊗V , we can introduce the notion of tensor operator
on V .

Definition 1. The set {Vk} of dim V◦ operators on V is called tensor operator of A transforming
as T ◦ if for all a ∈ U ′

q(son), T , vk , vα we have

σ ◦ (T ◦ ⊗ T )(a)vk ⊗ vα = (T (a) ◦ σ)vk ⊗ vα

where σ is a linear map V◦ ⊗ V → V , such that σ(vk ⊗ vα) = Vkvα .

Proposition 1 and the above definition give us a possibility to introduce the notation of the
vector operator of U ′

q(son) on the space V . Substituting T ◦ → T1, T ◦ ⊗ T → T ⊗, we obtain
the following definition.

Definition 2. The set {Vk}, k = 1, 2, . . . , n, of operators on V , where a representation T of
U ′

q(son) is realized, such that

[Vj−1, T (Ij,j−1)]q = Vj [T (Ij,j−1), Vj ]q = Vj−1 (36)

[T (Ij,j−1), Vk] = 0 if j �= k and j − 1 �= k (37)

where [X, Y ]q = q1/2XY − q−1/2YX, is called the vector operator of the algebra U ′
q(son).
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It is easy to verify that the action of operators T (Ij,j−1) on the vectors Vk vα directly
corresponds to actions (4)–(6) of operators T ⊗(Ij,j−1) on the vectors vk ⊗ vα .

Let T be a direct sum of irreducible classical type representations of U ′
q(son) with arbitrary

multiplicities. Choose a GT basis in V . Let us consider an invariant subspaces Vmn,s where
subrepresentation equivalent to Tmn

is realized. The number s labels the number of such
subspaces if the corresponding multiplicity exceeds 1. Combine the vectors Vk |(mn, ξn−1); s〉,
where {|(mn, ξn−1); s〉} is a GT basis of Vmn,s , with the CGC as in (24) for some fixed
m′

n ∈ S(mn). Two variants are possible. First, all the vectors |m′
n, ξn−1〉⊗ are zero. Second,

on the space spanned by the vectors |m′
n, ξn−1〉⊗, a representation of U ′

q(son) equivalent to
Tm′

n
is realized. From the Schur lemma, it follows that

|m′
n, ξn−1〉⊗ =

∑
s ′

(m′
n, s

′‖V ‖mn, s) |m′
n, ξn−1; s ′〉 (38)

where (m′
n, s

′‖V ‖mn, s) are some coefficients (reduced matrix elements) depending only on
m′

n, s ′, mn, s and the vector operator {Vk}. Using the analogue of relation (35) for the vector
operator and (38) we have

Vn|mn, ξn−1; s〉 =
∑
m′

n,s
′

(
(m′

n, ξn−1)|n, (mn, ξn−1)
)
(m′

n, s
′‖V ‖mn, s) |m′

n, ξn−1; s ′〉. (39)

As was claimed above, the coefficients
(
(m′

n, ξn−1)|n, (mn, ξn−1)
)

may depend on mn−1.
Since this dependence is identical for all the possible vector operators in arbitrary spaces,
we choose, for a moment, V to be the space Vmn+1 of the irreducible representation Tmn+1 of
U ′

q(son+1) for some convenient mn+1, and {Vk} ≡ {Tmn+1(I
+
n+1,k)}. Extracting the dependence

on mn−1 from the matrix elements of Tmn+1(In+1,n) and comparing it with formulas (25), (26),
we obtain (

(m′
n, ξn−1)|n, (mn, ξn−1)

) = (
n, (mn, ξn−1)|(m′

n, ξn−1)
)
λm′

n,mn

where λm′
n,mn

are some coefficients depending on m′
n and mn only. Returning to formula (39)

and denoting (m′
n, s

′‖V ‖mn, s)
′ = (m′

n, s
′‖V ‖mn, s)λm′

n,mn
we have

Vn|mn, ξn−1; s〉 =
∑
m′

n,s
′

(
n, (mn, ξn−1)|(m′

n, ξn−1)
)
(m′

n, s
′‖V ‖mn, s)

′ |m′
n, ξn−1; s ′〉. (40)

Iterating the second formula in (36), we obtain the action formulas for {Vk}, 1 � k < n. Thus,
we deduce the following q-analogue of the Wigner–Eckart theorem.

Theorem 4. If V is a Hilbert space and its GT basis {|mn, ξn−1; s〉} is orthonormal, we have,
for the components of vector operator {Vk} on V , the decomposition

〈m′
n, ξ

′
n−1; s ′|Vk|mn, ξn−1; s〉 = (

(m′
n, ξ

′
n−1)|k, (mn, ξn−1)

)′
(m′

n, s
′‖V ‖mn, s)

′

where(
(m′

n, ξ
′
n−1)|k, (mn, ξn−1)

)′ = 〈mn+1, ξ
′
n|Tmn+1(I

+
n+1,k)|mn+1, ξn〉

〈mn+1,m′
n, ξn−1|Tmn+1(In+1,n)|mn+1,mn, ξn−1〉

×(n, (mn, ξn−1)|(m′
n, ξn−1)

)
1 � k < n

(see comments after analogous formula (27)).
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